Edward Luttwak explains why weapons systems are so expensive : Breaking the Bank. Why Weapons are so Expensive (The American Interest, Sep/Oct 2007).
One problem is that defense contractors have a limited ability to exploit economies of scale. The "astounding persistence of traditional weapon configurations" is another:
The old configurations were a good fit for the technology of 1945. Today, they have become obstacles to military advancement, severely compounding the procurement paradox. Instead of shaping new platform and weapon configurations to fit today’s information technology, communications, sensor and guidance equipment, we are shoving, cramming and molding such technology to fit into the nooks and crannies of 1945-era platforms. Moreover, those traditional platforms mostly retain their 1945 character as autonomously operating units, even though in war they would always operate in groups of near-identical platforms and, increasingly likely, in joint configurations with other kinds of platforms.
For example, airborne radars, including the latest Active Electronically Scanned Arrays, are perhaps a hundred times as expensive pound for pound as even the most elaborate high-definition television sets. But what makes them almost a thousand times more expensive is the need to miniaturize and package the new radars so that they will fit into the nose-cone of fighter aircraft designed for aerodynamic optimality rather than to accommodate equipment as elaborate as today’s best radars.
Luttwak offers the story of unmanned aerial vehicles (UAV) to show how the traditional weapons systems, and the institutional armed services that are built around them, survive:
Unmanned aerial vehicles are not new: Several kinds were operating in the 1950s and remotely controlled drones were flying long before then. Yet it was not until June 1982 that UAVs were deployed operationally as an integral part of a combat force in war: The Israeli Army’s 162nd Division used observation RPVs (remotely piloted vehicles, as they were then called) in their fight against Syrian forces in Lebanon. The dramatic results of that experience were widely shared with the U.S. Department of Defense. The evidence ought to have been immediately convincing: The actual imagery was taped. Yet here we are in 2007, and the integration of UAVs has only just begun, even in the most advanced armed forces, including those of the United States. How does one explain this?
The most prevalent excuse for resisting anything new is cost, but that excuse cannot be used against UAVs as a category. While one or two types of UAVs are very expensive, most are rather cheap. Nor is there evidence to support the widespread belief that the introduction of pilotless aircraft has been impeded by pilot-dominated command structures. It seems instead that the resistance to UAVs is more a case of diffused institutional resistance to any new platform category that must inevitably be funded at the expense of established ones.
Such determined institutional resistance can be documented. For example, the IAI/TRW Hunter UAV program was cancelled in 1996 after the acquisition of an initial batch because U.S. Army evaluators reported many severe defects: inadequate range, unsatisfactory datalink, too big to fit into the designated transport aircraft, unstable software, and unacceptable engines. After considering (one hopes only perfunctorily) an absurdly expensive $2 billion program to remedy this long list of crippling defects, the planned acquisition was simply cancelled. The cancellation inevitably perpetuated the roles of existing U.S. aviation platforms, notably helicopters and fixed-wing light observation aircraft. Alas, this could not be helped, for the cancellation was seemingly a straightforward matter of rejecting defective equipment.
As it happens, however, the initial batch of entirely unimproved Hunters, supposedly crippled by defects, did not go to waste. In the spring of 1999, eight of the surviving Hunters, redesignated RQ-5A, were sent to Albania in support of Operation Allied Force, the NATO air campaign against Serbia. In the course of 281 sorties (281 sorties for only eight aircraft) the Hunters provided real-time video of conditions on the ground both to commanders on the spot and, via satellite links, to NATO headquarters. Hunter operators identified and located targets for the air campaign and often stayed on station during air strikes to provide real-time damage-assessment, greatly reducing the need for follow-up strikes.
In 2002, Hunters were tested experimentally for ground strike operations, dropping Brilliant Antiarmor Munitions (BATs) to achieve direct hits on tank targets. Later a Hunter was armed with the BAT-derived “Viper Strike” fitted with a laser seeker: Nine drops yielded seven hits. In 2003, the Army used Hunters for scouting, fire-observation, damage assessment and overwatch roles during the invasion and subsequent occupation of Iraq. By mid-2004, when leftover Hunters had flown some 30,000 flight hours—a remarkable demonstration of reliability—another 14 unimproved Hunters were purchased and immediately pressed into service.
The 1996 cancellation of the Hunter program was thus clearly not the result of its shortcomings but of exaggerated or simply unnecessary requirements, all in the service of institutional resistance to new platform configurations. UAVs were not rejected outright but were instead disqualified through the imposition of requirements that were inappropriate for the new configuration—namely, reliability and versatility characteristics of manned aircraft. The bureaucratic kill mechanism worked like this: Adding redundancy for more reliability would increase costs, but something so expensive should carry more than just one sensor. Adding sensors would make the UAV more expensive still, so much so that it should be equipped for safe recovery in all circumstances. A few applications of this line of reasoning soon made UAVs as costly as the equivalent manned platforms or more so, without giving it the versatility of manned platforms. The result, though bad for U.S. military capabilities, was certainly good for the attack helicopter business, on which far more has been spent since the advent of UAVs than on UAVs themselves, and by orders of magnitude.
Luttwak's language clearly suggests intent - but the slathering on of exaggerated and unnecessary requirements may also be due to a failure of imagination.
Comments